博客
关于我
【MXNet学习21】 4 MNIST手写数字体分类
阅读量:205 次
发布时间:2019-02-28

本文共 404 字,大约阅读时间需要 1 分钟。

MNIST手写数字体分类入门

MNIST数据集是机器学习领域的经典 datasets之一,主要用于手写数字分类任务。该数据集包含60000个训练样本和10000个测试样本,涵盖数字0-9十个类别。图4-1展示了数据集的典型图像样例。

对于计算机而言,图像数据并非我们直观的二维图像形式,而是一个三维矩阵。以MNIST数据集为例,单张手写数字的图像可表示为一个28x28x1的三维矩阵。其中,前两个维度对应图像的宽度和高度,第三个维度则表示图像的通道数。

在MNIST数据集中,所有图像均为灰度图像,因此通道数为1。如果处理的是彩色图像,则通道数会扩展至3,分别对应RGB三个颜色通道(红、绿、蓝)。因此,灰度图像可简化为二维矩阵形式,而彩色图像则扩展为三维矩阵。

这一三维矩阵结构是深度学习框架(如MXNet)处理图像数据的基础。通过对这些矩阵数据进行特征提取和分类模型训练,计算机能够学习区分不同手写数字。

转载地址:http://ncdi.baihongyu.com/

你可能感兴趣的文章
Nvidia Cudatoolkit 与 Conda Cudatoolkit
查看>>
NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
查看>>
NVIDIA-cuda-cudnn下载地址
查看>>
nvidia-htop 使用教程
查看>>
nvidia-smi 参数详解
查看>>
Nvidia驱动失效,采用官方的方法重装更快
查看>>
nvm切换node版本
查看>>
nvm安装以后,node -v npm 等命令提示不是内部或外部命令 node多版本控制管理 node多版本随意切换
查看>>
ny540 奇怪的排序 简单题
查看>>
NYOJ 1066 CO-PRIME(数论)
查看>>
nyoj------203三国志
查看>>
nyoj58 最少步数
查看>>
OAuth2 + Gateway统一认证一步步实现(公司项目能直接使用),密码模式&授权码模式
查看>>
OAuth2 Provider 项目常见问题解决方案
查看>>
Vue.js 学习总结(14)—— Vue3 为什么推荐使用 ref 而不是 reactive
查看>>
oauth2-shiro 添加 redis 实现版本
查看>>
OAuth2.0_JWT令牌-生成令牌和校验令牌_Spring Security OAuth2.0认证授权---springcloud工作笔记148
查看>>
OAuth2.0_JWT令牌介绍_Spring Security OAuth2.0认证授权---springcloud工作笔记147
查看>>
OAuth2.0_介绍_Spring Security OAuth2.0认证授权---springcloud工作笔记137
查看>>
OAuth2.0_完善环境配置_把资源微服务客户端信息_授权码存入到数据库_Spring Security OAuth2.0认证授权---springcloud工作笔记149
查看>>