博客
关于我
【MXNet学习21】 4 MNIST手写数字体分类
阅读量:205 次
发布时间:2019-02-28

本文共 404 字,大约阅读时间需要 1 分钟。

MNIST手写数字体分类入门

MNIST数据集是机器学习领域的经典 datasets之一,主要用于手写数字分类任务。该数据集包含60000个训练样本和10000个测试样本,涵盖数字0-9十个类别。图4-1展示了数据集的典型图像样例。

对于计算机而言,图像数据并非我们直观的二维图像形式,而是一个三维矩阵。以MNIST数据集为例,单张手写数字的图像可表示为一个28x28x1的三维矩阵。其中,前两个维度对应图像的宽度和高度,第三个维度则表示图像的通道数。

在MNIST数据集中,所有图像均为灰度图像,因此通道数为1。如果处理的是彩色图像,则通道数会扩展至3,分别对应RGB三个颜色通道(红、绿、蓝)。因此,灰度图像可简化为二维矩阵形式,而彩色图像则扩展为三维矩阵。

这一三维矩阵结构是深度学习框架(如MXNet)处理图像数据的基础。通过对这些矩阵数据进行特征提取和分类模型训练,计算机能够学习区分不同手写数字。

转载地址:http://ncdi.baihongyu.com/

你可能感兴趣的文章
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty源码—8.编解码原理二
查看>>
Netty源码解读
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Netty相关
查看>>
Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
查看>>
Network Sniffer and Connection Analyzer
查看>>
NetworkX系列教程(11)-graph和其他数据格式转换
查看>>
Networkx读取军械调查-ITN综合传输网络?/读取GML文件
查看>>
Net与Flex入门
查看>>
net包之IPConn
查看>>
NFinal学习笔记 02—NFinalBuild
查看>>
NFS共享文件系统搭建
查看>>
nfs复习
查看>>
NFS网络文件系统
查看>>
nft文件传输_利用remoting实现文件传输-.NET教程,远程及网络应用
查看>>
ng 指令的自定义、使用
查看>>
nginx + etcd 动态负载均衡实践(二)—— 组件安装
查看>>