博客
关于我
【MXNet学习21】 4 MNIST手写数字体分类
阅读量:205 次
发布时间:2019-02-28

本文共 404 字,大约阅读时间需要 1 分钟。

MNIST手写数字体分类入门

MNIST数据集是机器学习领域的经典 datasets之一,主要用于手写数字分类任务。该数据集包含60000个训练样本和10000个测试样本,涵盖数字0-9十个类别。图4-1展示了数据集的典型图像样例。

对于计算机而言,图像数据并非我们直观的二维图像形式,而是一个三维矩阵。以MNIST数据集为例,单张手写数字的图像可表示为一个28x28x1的三维矩阵。其中,前两个维度对应图像的宽度和高度,第三个维度则表示图像的通道数。

在MNIST数据集中,所有图像均为灰度图像,因此通道数为1。如果处理的是彩色图像,则通道数会扩展至3,分别对应RGB三个颜色通道(红、绿、蓝)。因此,灰度图像可简化为二维矩阵形式,而彩色图像则扩展为三维矩阵。

这一三维矩阵结构是深度学习框架(如MXNet)处理图像数据的基础。通过对这些矩阵数据进行特征提取和分类模型训练,计算机能够学习区分不同手写数字。

转载地址:http://ncdi.baihongyu.com/

你可能感兴趣的文章
Ollama怎么启动.gguf 大模型
查看>>
ollama本地部署DeepSeek(Window图文说明)
查看>>
ollama运行多模态模型如何进行api测试?
查看>>
OMG,此神器可一次定一周的外卖
查看>>
Omi 多端开发之 - omip 适配 h5 原理揭秘
查看>>
On Error GOTO的好处
查看>>
onclick事件的基本操作
查看>>
oncopy和onpaste
查看>>
onCreate中的savedInstanceState作用
查看>>
onCreate()方法中的参数Bundle savedInstanceState 的意义用法
查看>>
One good websit for c#
查看>>
One-Shot学习/一次学习(One-shot learning)
查看>>
OneASP 安全公开课,深圳站, Come Here, Feel Safe!
查看>>
OneBlog Shiro 反序列化漏洞复现
查看>>
oneM2M
查看>>
Oneplus5重装攻略
查看>>
one_day_one--mkdir
查看>>
ONI文件生成与读取
查看>>
Vue 项目中实现高效的消息提示与确认对话框功能(模版)
查看>>
Online PDF to PNG、JPEG、WEBP、 TXT - toolfk
查看>>